
Discrete & Computational Geometry (2024) 71:121–159
https://doi.org/10.1007/s00454-023-00533-w

Computing a Link Diagram From Its Exterior

Nathan M. Dunfield1 ·Malik Obeidin2 · Cameron Gates Rudd3

Received: 24 July 2022 / Revised: 16 March 2023 / Accepted: 26 March 2023 /
Published online: 2 August 2023
© The Author(s) 2023

Abstract
Aknot is a circle piecewise-linearly embedded into the 3-sphere.The topologyof a knot
is intimately related to that of its exterior, which is the complement of an open regular
neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas
their exteriors, which are compact 3-manifolds with torus boundary, are encoded by
triangulations. Here, we give the first practical algorithm for finding a diagram of a
knot given a triangulation of its exterior. Our method applies to links as well as knots,
and allows us to recover links with hundreds of crossings. We use it to find the first
diagrams known for 23 principal congruence arithmetic link exteriors; the largest has
over 2500 crossings. Other applications include finding pairs of knots with the same
0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré
conjecture.

Keywords Computational topology · Low-dimensional topology · Knot · Knot
exterior · Knot diagram · Link · Link exterior · Link diagram

Mathematics Subject Classification 57K10 · 57K30

Editor in Charge: Kenneth Clarkson

Nathan M. Dunfield
nathan@dunfield.info

Malik Obeidin
obeidinm@gmail.com

Cameron Gates Rudd
cameron.rudd@gmail.com

1 Deptment of Mathematics, University of Illinois Urbana-Champaign, 1409 W. Green Street,
Urbana, IL 61801, USA

2 Google, Inc., Atlanta, GA, USA

3 Max-Planck-Institut für Mathematik, Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-023-00533-w&domain=pdf
http://orcid.org/0000-0002-9152-6598
http://orcid.org/0000-0001-6065-1110

122 Discrete & Computational Geometry (2024) 71:121–159

Fig. 1 A planar diagram for a knot can be viewed as a 4-valent graph (the “shadow” of the above figure)
with a planar embedding where every vertex represents a crossing, a place where one part of the knot crosses
in front of the other in 3D

1 Introduction

A knot is a piecewise-linear (PL) embedding of a circle S1 into the 3-sphere S3.
The study of knots goes back to the 19th century, and today is a central focus of
low-dimensional topology,with applications to chemistry [25], biology [26], engineer-
ing [55], and theoretical computer science [47]. Two knots are topologically equivalent
when they are isotopic, that is, when one can be continuously deformed to the other
without passing through itself. Computationally, knots are typically encoded as planar
diagrams (Fig. 1); there are more than 350 million distinct knots with diagrams of at
most 19 crossings as enumerated by [12].

The topology of knots is intimately related to that of their exteriors, where the
exterior of a knot K is the compact 3-manifold with torus boundary E(K) := S3 \
N (K), where N (K) is an open tubular neighborhood of K . Indeed, the orientation-
preserving homeomorphism type of the exterior E(K) determines the knot K [28].
Many algorithms for knots work via their exteriors, starting with Haken’s foundational
method for deciding when a knot is equivalent to the unknot [30]. Consequently, the
problem of going from a diagram D of K to a triangulation of E(K) is well studied [31,
Sect. 7]; for ideal triangulations (see Sect. 2.1 below), one needs only four tetrahedra
per crossing of D [71, Sect. 3]. Here, we study the inverse problem:

FIND DIAGRAM Input a triangulation T of a knot exterior E(K), output a
diagram of K .

If the input triangulation T is guaranteed to be that of a knot exterior (in fact, this
is decidable by [40, Algorithm S]), then a useless algorithm to find D is just this: start
generating all knot diagrams, triangulate each exterior, and then do Pachner moves
(see Sect. 2.4) on these triangulations. Since any two triangulations of a compact
3-manifold are connected by a sequence of such moves, one eventually stumbles
across T , thus finding a diagram for the underlying knot. We do not explore the
computational complexity of FindDiagram beyond showing it is at least exponential
space in Theorem 9.1, but rather give the first algorithm that is highly effective in
practice. We work more generally with links, where a link is a disjoint union of

123

Discrete & Computational Geometry (2024) 71:121–159 123

knots. While a link exterior does not uniquely determine a link [1, Fig. 9.28], this
indeterminacy is removed by specifying meridional curves for the link, see Sect. 2.3;
hence we require such curves as part of the input in Sect. 1.2. Figures 2 and 3 show
diagrams that were found by our method; these are the first known diagrams of these
particular link exteriors, see Sect. 11.1.

1.1 PriorWork

In general, an efficient algorithmic solution to the homeomorphism problem has not
been implemented, and would be quite complicated; see [42]. However, when the
interior of E(K) has a complete hyperbolic structure, in short is hyperbolic, the home-
omorphism problem can be quickly solved in practice using hyperbolic geometry, even
for triangulations with 1000 tetrahedra [69]. This case is in practice generic for prime
knots; for example, 99.999% of the knots in [12] are hyperbolic. This allows a table
lookup method for Find Diagram when K is small enough; one uses hyperbolic and
homological invariants to form a hash of E(K), queries a database of knots to get a
handful of possible Ki , and then checks if any E(Ki) is homeomorphic to E(K). This
technique is used by the identify method of [18], but is hopeless for something
like Fig. 2, as the number of links of that size exceeds the number of atoms in the
visible universe [65].

A related approach was used in [5, 17] to find knot diagrams for all 1267 knots
where E(K) is hyperbolic and can be triangulated with at most nine ideal tetrahedra
[13, 19]. While knots with few crossings have simple exteriors, the converse is not the
case, and the simplest known diagrams for about 25% of these knots have 100–300
crossings. However, these knots either fall into very special families which can be
tabulated to a large number of crossings, or one can drill out additional curves to get
a link exterior that appears in an existing table and has special properties allowing the
recovery of a diagram of the knot itself.

The exteriors of the special class of alternating knots have nice topological char-
acterizations given in [29] and [34]. Using these characterizations, Howie [34] and
independently Juhász and Lackenby in an appendix to [29] describe normal surface
theory algorithms for determining whether a 3-manifold E(K) is the exterior of an
alternating knot. The certificate that E(K) is the exterior of an alternating knot can
then be used to produce an alternating knot diagram of K ; see [34, p. 2370].

There are other ad hoc methods in the literature, see e.g. [7] and references therein,
but this paper is the first to give a generically applicable method for Find Diagram.

1.2 Outline of the Algorithm

AsFigs. 2 and3 show, ourmethod can solveFindDiagram in caseswhere anydiagram
for the link has 66 and 55 or more crossings respectively. It also easily handles any
example covered by one of the techniques discussed in Sect. 1.1, andmore applications
are given in Sects. 10 and 11. Experimental mean running time was O(1.07n), where
n is the number of tetrahedra in the input ideal triangulation, see Fig. 24. With the
definitions of Sect. 2, the input for our algorithm is:

123

124 Discrete & Computational Geometry (2024) 71:121–159

Fig. 2 The first known diagram of a link whose exterior is M̊ = H
3/�(I) where �(I) is the principal

congruence subgroup of PSL2Z
[(
1+ i

√
15

)
/2

]
of level I = 〈

6,
(−3+ i

√
15i

)
/2

〉
from [6]; it has 24 com-

ponents and 294 crossings. The input ideal triangulation T̊ for M̊ had 249 tetrahedra. Since the hyperbolic
volume of M̊ ≈ 225.98, any diagram must have at least 66 crossings by [3, Thm. 5.1]

Input (a) An ideal triangulation T̊ of a compact 3-manifold M̊ with toroidal boundary,
with an essential simple closed curve αi for each boundary component of M̊ .
(b) A sequence (Pi) of Pachner moves transforming the layered filling triangu-
lation T of the manifold M = M̊(α1, . . . , αk) into a specific 2-tetrahedra base
triangulation T0 of S3.

One might object that (b) is effectively cheating, since no polynomial-time algorithm
for finding (Pi) is known, or indeed for deciding if M is S3. Using the estimates
in [48], one can perform a naive search to find some (Pi), but the complexity of this is
super-exponential. However, recognizing S3 by finding suchmoves is easy in practice,
see Sect. 4, with the length of (Pi) linear in the size of T as per Fig. 26. The output of

123

Discrete & Computational Geometry (2024) 71:121–159 125

Fig. 3 The first known diagram of a link whose exterior is M̊ = H
3/�(I) where �(I) is the principal

congruence subgroup of PSL2Z
[(
1+ i

√
15

)
/2

]
of level I = 〈

5,
(
5 + i

√
15

)
/2

〉
from [6]; it has 24 compo-

nents and 1092 crossings. The input ideal triangulation T̊ for M̊ had 211 tetrahedra. Since the hyperbolic
volume of M̊ ≈ 188.32, any diagram must have at least 56 crossings [3, Thm. 5.1]

the algorithm is a knot diagram D, encoded as a planar graph with over/under crossing
data for the vertices.

The main data structure is a triangulation T of S3 with a PL link L that is disjoint
from the 1-skeleton. The link L is encoded as a sequence of line segments, each con-
tained in a single tetrahedron of T , with endpoints recorded in barycentric coordinates.
An initial pair (T , L) in (b) is constructed from input (a) as described in Sect. 3. The
algorithm proceeds by performing the Pachner moves Pi from (b), keeping track of
the PL arcs encoding the link L throughout using the techniques of Sect. 5. The result
is the base triangulation enriched with PL arcs representing the link L . As detailed in
Sect. 7, this triangulation of S3 can be cut open along faces and embedded inR3, giving
an embedding of the cut-open link into R

3 as a collection of PL arcs with endpoints
on the boundary of these tetrahedra. As in Figs. 20 and 21, these PL arcs are then tied

123

126 Discrete & Computational Geometry (2024) 71:121–159

up using the face identifications to obtain a collection of closed PL curves that repre-
sent L . An initial link diagram D is obtained by projecting this PL link onto a plane
and recording crossing information. We then apply generic simplification methods to
D and output the result.

This outline turns out to be deceptively simple. Some key difficulties are:

• Understanding what 2→ 3 and 3→ 2 Pachner moves do to the link L is fairly
straightforward as these correspond to changing the triangulation of a convex
polyhedron in R

3. However, while these two moves theoretically suffice for (b),
in practice one wants to use 2→ 0 moves as well, see Sect. 4, and these are
much harder to deal with, as Fig. 8 shows. We thus expand each 2→ 0 move into
a (sometimes quite lengthy) sequence of 2→ 3 and 3→ 2 moves as discussed
in Sect. 6. We give a simplified expansion for the trickiest part, the endpoint-
through-endpoint move, using six of the basic 2→ 3 and 3→ 2 moves instead
of 14.

• The complexity of the link grows very rapidly as we do Pachner moves, resulting
in enormously complicated initial diagrams. We greatly reduce this by elementary
local simplifications to the link after each Pachner move, see Sect. 5.5.

• Prior work on simplifying link diagrams was focused on those with 30 or fewer
crossings, where random application of Reidemeister moves (plus flypes) are
extremely effective. Here, we need to simplify diagrams with 10,000 or even
100,000 crossings down to somethingwith less than 100, and suchmethods proved
ineffective for this. Instead, we used the more global strand pickup method of
Sect. 8.

2 Background

2.1 Triangulations

Let M be a compact orientable 3-manifold, possibly with boundary. A triangulation
of M is a cell complex T made from finitely many tetrahedra by gluing some of their
2-dimensional faces in pairs via orientation-reversing affine maps so that the result-
ing space is homeomorphic to M . These triangulations are not necessarily simplicial
complexes, but rather what are sometimes called semi-simplicial, pseudo-simplicial,
or singular triangulations. Of particular importance are those with a single vertex, the
1-vertex triangulations. For any triangulation, we use T i to denote the i-skeleton of T ,
that is, the union of cells of dimension at most i .

When M has nonempty boundary, an ideal triangulation of M is a cell complex T
made out of finitely many tetrahedra by gluing all of their 2-dimensional faces in pairs
as above so thatM\∂M is homeomorphic toT \T 0. Put anotherway, themanifoldM is
what you get by gluing together truncated tetrahedra in the corresponding pattern. See
[67] for background on ideal triangulations, which we use only for 3-manifolds whose
boundary is a union of tori. We always include the modifier “ideal”, so throughout
“triangulation” means a non-ideal, also called “finite”, triangulation.

123

Discrete & Computational Geometry (2024) 71:121–159 127

2.2 Triangulations with PL Curves

Consider a tetrahedron � inRn as the convex hull of its vertices v0, v1, v2, and v3. We
encode points in � using barycentric coordinates, that is, write p ∈ � as the unique
convex combination

∑
i xivi and then represent p by the vector (x0, x1, x2, x3), where

of necessity
∑

i xi = 1. For a 3-manifold triangulation T , we view each tetrahedron
τ as having a fixed identification with the tetrahedron in R

4 whose vertices are the
standard basis vectors; we use this to encode points in τ by barycentric coordinates.

An oriented PL curve in T will be described by a sequence of such barycentric
coordinates as follows. A barycentric arc a is an ordered pair of points (u, v) in a
tetrahedron τ , representing the straight segment joining them.Wewrite a.start = u
and a.end = v. A barycentric curve C is a sequence of barycentric arcs ai such that
ai .end and ai+1.start correspond to the same point in M under the face identifica-
tions of T . For a barycentric curve, we define ai .next = ai+1 and ai+1.past = ai ;
these may not lie in the same tetrahedron. Suppose the barycentric curve C consists
of N barycentric arcs. If a0.start and aN .end correspond to the same point in M ,
we have a barycentric loop. An embedded barycentric loop is a barycentric knot. A
barycentric link is a finite disjoint union of such knots.

We always require that a barycentric curve C is in the following kind of general
position with respect to T . First, C is disjoint from T 1. Second, any intersection
of a constituent barycentric arc a with T 2 is an endpoint of a. Finally, arcs do not
bounce off faces of T 2, so if an arc ends in a face, the next arc must be in the adjacent
tetrahedron on the other side of that face. Throughout, we use only points whose
barycentric coordinates are in Q.

2.3 Dehn Filling

Suppose M̊ is a compact 3-manifold whose boundary is a union of tori. A simple
closed curve on a surface is essential if it does not bound a disk. Given an essential
simple closed curve αi on each boundary component Ti , the Dehn filling of M̊ along
α = (α1, . . . , αk) is the closed 3-manifold M̊(α) obtained from M̊ by gluing a solid
torus D2 × S1 to each Ti so that ∂D2 × {point} is αi . When M̊ is the exterior of a
link L in S3 and each αi is a small meridional loop about the i-th component of L ,
then M̊(α) is just S3. Given an ideal triangulation T̊ of M̊ and Dehn filling curves α,
we follow [39, 40, 70] to create a 1-vertex triangulation T of M̊(α) that we call the
layered filling triangulation; see Sect. 3. A key point is that the link L consisting of
the cores of the k added solid tori is a barycentric link in T made of just k barycentric
arcs.

2.4 Pachner Moves

A 3-manifold triangulation T can be modified by local Pachner moves, also known
as bistellar flips to give a new triangulation of the same underlying manifold. Those
we use are shown in Fig. 4 and are as follows:

123

128 Discrete & Computational Geometry (2024) 71:121–159

0 2 2 3

4 4

Fig. 4 Pachner moves that preserve the number of vertices

• The 2→ 3 move and its inverse 3→ 2 move. These take a triangulation of a ball,
possibly with boundary faces glued together, and retriangulate the interior without
changing the boundary triangulation. Specifically, the 2→ 3 move takes a pair
of distinct tetrahedra sharing a face and replaces them with three new tetrahedra
around a new central edge. The 3→ 2 move reverses this, replacing three distinct
tetrahedra around a valence-3 edge with two tetrahedra sharing a face.

• The 4→ 4 move. The 4→ 4 move takes four tetrahedra around a central edge and
replaces them with four new tetrahedra assembled around a new valence-4 edge.

• The 2→ 0 move and its inverse 0→ 2 move. The 2→ 0 move takes a pair of
tetrahedra sharing two faces to form a valence-2 edge and collapses them onto
their common faces. The 0→ 2 move reverses this by puffing air into a pair of
faces sharing an edge and adding two new tetrahedra. We call the complex created
by the 0→ 2 move a pillow. The 0→ 2 move inflates a pillow and the 2→ 0 move
collapses a pillow.

If S and T are two 1-vertex triangulations of the same closed 3-manifold M , then
there is a sequence of Pachner moves that transforms S into T , provided both S and T
have at least two tetrahedra. To do this, one need only use 2→ 3 and 3→ 2 moves by
[46, Thm. 1.2.5] (see also [54, 57]). As noted in the introduction, the 2→ 0 and 0→ 2
moves are much harder to deal with than the others. We will call the 2→ 3, 3→ 2, and
4→ 4 moves the simple Pachner moves, and note that one needs only these moves to
connect two triangulations as above. However, as discussed in Remark 4.1, the 2→ 0
and 0→ 2 moves are extremely useful in practice. When M is S3, any triangulation
T with n tetrahedra is related to a standard triangulation by at most 12 · 106n222·103n2
Pachner moves [48]. Experimentally, one needs many fewer moves [10]. In our data

123

Discrete & Computational Geometry (2024) 71:121–159 129

Fig. 5 A 1-tetrahedron triangulation of a solid torus. Here, the back two faces are identified with the twist
indicated by the letter “F”; the edge colors indicate the equivalence classes in the glued-up triangulation
[35, Appendix A]

shown in Fig. 26, the number is O(n); this is essential for the utility of our algorithm
for Find Diagram.

3 Building the Initial Triangulation

In this section, we detail the construction of the layered filling triangulation T , men-
tioned in Sect. 2.3, from part (a) of the input: an ideal triangulation T̊ and Dehn filling
slopes α. This procedure is nearly identical to the approach used in the SnapPy kernel
[70] for constructing triangulations of Dehn fillings, with a slight tweak at the very last
step to end up with a triangulation in the style of [40] containing layered triangulations
of the Dehn filling solid tori.

Given a single tetrahedron, the face identification indicated in Fig. 5 produces a solid
torus. Any 1-tetrahedron triangulation of a solid torus is combinatorially equivalent
to this one. The triangulation of the boundary torus induced by the 1-tetrahedron
triangulation of the solid torus is the standard 1-vertex triangulation of a torus. For
any edge e of the boundary torus, there is a move modifying the triangulation that,
after cutting open the torus so that the edge e is the diagonal set inside a square, flips
the diagonal. This is commonly called an edge flip move. Any such flip move can be
realized by attaching a tetrahedron as in Fig. 6; this produces a triangulation of a solid
torus with an additional tetrahedron and with boundary triangulated according to the
flip move. A layered solid torus with t layers is a triangulation of a solid torus that
is obtained from a (t − 1)-layer layered solid torus by attaching a new tetrahedron
realizing some bistellar flip of the boundary torus. A 0-layer layered solid torus is the
1-tetrahedron solid torus. This 0-layer solid torus contained in the layered solid torus
is called the core solid torus. While every layered solid torus has boundary given by
the standard one vertex triangulation of the torus, the isotopy class, or slope, of the
boundary of a meridian disk changes as layers are added.

Let T be the standard triangulation of a torus and α a slope on T . There is an
algorithm for producing a layered solid torus so that filling α bounds a meridian
disk, see [40, Thm. 4.1]. One can then attach this layered solid torus to a triangulated

123

130 Discrete & Computational Geometry (2024) 71:121–159

Fig. 6 An edge flip (top) and corresponding tetrahedron (bottom)

manifold M̊ whose torus boundary is triangulated in the standard 1-vertexway to obtain
a triangulation of theDehn filling M̊(α).We build the layered filling triangulation from
T̊ and α as follows. For notational simplicity, we assume M̊ has only one boundary
component.

Algorithm 3.1 layered_filling_triangulation (T̊ , α)

1. Truncate the ideal tetrahedra of T̊ to obtain a cell complex homeomorphic to the
compact manifold with torus boundary M̊ .

2. Subdivide this cell complex by placing a vertex at the center of each hexagonal
face to divide it into six triangles, and then coning to the middle of every 3-cell.
This produces a triangulation of M̊ .

3. Simplify the triangulation of the boundary using the procedure in [70], which
largely consists of folding two adjacent triangles across their common edge, until
the boundary tori are triangulated in the standard way.

4. Add layers to the boundary until the slope α is standard, that is, corresponds to the
meridian curve of the 0-layer solid torus.

5. Attach the 0-layer solid torus.
6. Collapse edges joining distinct vertices to obtain a 1-vertex triangulation of M(α).

NoteAlgorithm3.1 is identical to [70] except for step 5,where instead one adds a single
tetrahedron with two faces folded together to form a valence-1 edge; with vertices
identified, this single tetrahedron is a solid torus with a meridian disk collapsed to a
point.

Because we constructed the layered filling triangulation T from an ideal triangu-
lation of a manifold with toroidal boundary, we know which layered solid tori come
from Dehn filling. For each such layered solid torus, its core curve can be represented
by the line segment running between the barycenters of the faces in the core solid torus
that are glued together. In particular, there are natural barycentric arcs that represent
the link L consisting of the core curves of all the Dehn fillings. We add these arcs to
produce the initial triangulation T of M(α) with its associated barycentric link.

123

Discrete & Computational Geometry (2024) 71:121–159 131

4 Finding Certificates

Part (b) of the input to our algorithm is a certificate that the Dehn filling M = M̊(α)

is S3 in the form of Pachner moves simplifying a triangulation T of M to the base
triangulation T0 of S3. In practice, one starts with an ideal triangulation T̊ and Dehn
filling slopes α where it is unknown if M(α) is S3. We therefore need a way of
finding this sequence of Pachner moves when it exists. While deciding if a closed
3-manifold M is S3 is in NP by [36, 60] and additionally in co-NP assuming the
Generalized Riemann Hypothesis [72, Thm. 11.2], no sub-exponential time algorithm
is known. The current algorithm that is best in practice for S3 recognition is to first
heuristically simplify the input triangulation using Pachner moves and then apply the
theory of almost normal surfaces; see [11, Algorithm 3.2]. However, triangulations
of S3 that are truly hard to simplify using Pachner moves have not been encountered
in practice, and it is open whether they exist at all [10]. Thus, when M is S3, the initial
stage of [11, Algorithm 3.2] nearly always arrives at a 1-tetrahedron triangulation
of S3 and no normal surface theory is needed. The usefulness of our algorithm for
Find Diagram relies on the fact that a heuristic search using Pachner moves gives a
practical recognition algorithm for S3.

Remark 4.1 The effectiveness of our heuristic search procedure relies on the 2→ 0
move being atomic. Initially, we tried restricting our heuristic search to just the simple
Pachner moves (recall these are 2→ 3, 3→ 2, and 4→ 4), but were typically unable
to find a sequence that simplified the input triangulation of S3 down to one with just
a few tetrahedra. (To square this with [10], note from Fig. 26 that our triangulations
are much larger.) As is clear from Sect. 6.1, factoring the 2→ 0 move as a sequence
of 2→ 3 and 3→ 2 moves is complicated enough that one cannot expect to stumble
upon these sequences when the triangulation is large and the search is restricted to
simple Pachner moves.

Our simplification heuristic closely follows that of SnapPy [18], with some mod-
ifications that reduce the complexity of the final barycentric link in T0. These
include:

• Simplifying the layered filling triangulation T of Sect. 2.3 as much as possible
without modifying the few tetrahedra containing the initial link.

• Finding sequences of Pachnermoves toT0 for several different layered filling trian-
gulations, and then using the one requiring the fewest moves for the computations
in Sects. 5–8.

• Ensuring the tail of the sequence of moves is a geodesic in the Pachner graph
of [10].

The details are in Sect. 4.1.

4.1 Basic Triangulation Simplification

In this section, we detail how the initial triangulation T and Pachner moves trans-
forming it into T0 are constructed from the input pair (T̊ , α). Our overall goal is to

123

132 Discrete & Computational Geometry (2024) 71:121–159

minimize the number of Pachner moves and, especially, minimize the number that
involve any arcs.

The SnapPy kernel [18] provides two routines for trying to simplify a triangulation.
The first is simplify, which greedily does various moves that immediately reduce
the number of tetrahedra, as well as random 4→ 4 moves in hopes of setting up such a
reduction; it is very similar to [11, Alg. 2.5] which is intelligentSimplify
in Regina [15]. The second is randomize, which first does 4t random 2→ 3
moves, where t is the number of tetrahedra, and then calls simplify; it is key
for escaping local minima in the set of triangulations. In practice, one sometimes
needs randomize in order to reduce a layered filling triangulation T to T0. Because
randomize increases the number of tetrahedra drastically, however temporarily, we
work hard to avoid applying it when there are arcs present. We modified simplify
and randomize so that one can specify a subcomplex of the triangulation that is to
remain unchanged. Our basic strategy is:

1. Construct the layered filling triangulation T from (T̊ , α).
2. Apply simplify and randomize extensively to T with the proviso that each

tetrahedron that is the core of a filling layered solid torus is not modified. Call the
new triangulation T ′. It contains a barycentric link L ′ consisting of the cores of
the layered solid tori, which is isotopic to the original L in T .

3. If simplify reduces T ′ to T0, record the sequence of Pachner moves and con-
sider (T ′, L, (Pi)) a candidate input for the core algorithm. Otherwise, throw it
away.

4. Go back to 1. until we have several candidates for (T ′, L, (Pi)) or we get tired.
If no candidate is found, raise an error; otherwise output the one where (Pi) is
shortest.

Despite needing randomize to simplify some triangulations of S3 to T0, so far the
above has always succeeded.

Finally, it turns out the last few Pachner moves are the most expensive, since the
link is usually quite complicated at that point. Therefore, we built a look-up table of all
triangulations of S3 with at most five tetrahedra, along with geodesic Pachner move
sequences reducing these triangulations to T0. If, when searching for a sequence of
Pachner moves, we reduce the initial triangulation to one with fewer than five tetrahe-
dra, we can look up whether we indeed have S3, and we then append to the certificate
the geodesic Pachner move sequence reducing to T0. While this only shortens the
sequence by a few moves, it gave us a major speedup. For further details, see the file
simplify_to_base_tri.py in [20]. One referee points out that we might be
able to do even better with a larger look-up table. Currently, it contains 1448 triangu-
lations, and adding six or seven tetrahedra would increase this by 13,660 and 169,077
triangulations respectively [10, Sect. 3.1]. However, since the simplification heuristic
of Sect. 4 greedily applies 3→ 2 moves whenever they are available, one only needs
store geodesics for those triangulations where either there are no 3→ 2 moves or
there is a 3→ 2 move that is not the start of a geodesic to T0. This idea seems worth
exploring, but we leave it for others to pursue.

123

Discrete & Computational Geometry (2024) 71:121–159 133

5 Modifying Triangulations with Arcs

Part (a) of the input data produced the layered filled triangulation T of Sect. 3, which
comes enriched with a barycentric link L . Part (b) of the input data is a sequence of
Pachner moves (Pi) converting T to the base triangulation T0 described in Sect. 7.
The next step of our algorithm is to apply the moves (Pi) to T , carrying the link L
along as we go.

5.1 Pachner Moves with Arcs

In this section, we describe how we keep track of the barycentric arcs as Pachner
moves are performed. Throughout this section, T is a triangulation with barycentric
arcs and P is a Pachner move transforming T into the triangulation S = PT .

Recall that the simple Pachner moves are 2→ 3, 3→ 2, and 4→ 4. Each simple
Pachner move P takes a triangulated ball B in T , possibly with boundary faces glued
together, and re-triangulates B without changing the triangulation of ∂B to obtain S.
The arcs of the link L contained in the ball are initially encoded using the barycentric
coordinates ofT , andweneed to re-express these arcs in the newbarycentric coordinate
systemofS.Wemodel each simple Pachnermove as a pair of triangulations of concrete
bipyramids inR3, as shown in Fig. 7. We identify the tetrahedra in T and S involved in
P with tetrahedra in the corresponding bipyramid in R3. This identification allows us
to map barycentric arcs from T into R3, and then to map these arcs in R3 into S. The
remainder of Sect. 5 details how this is used to give a method with_arcs[P] that
applies a simple Pachner move P to T while transferring the barycentric arcs from T
to S. This approach cannot work for the 2→ 0 move, as demonstrated by Fig. 8. To
implement with_arcs[2→ 0], we factor the 2→ 0 move into a sequence of 2→ 3
and 3→ 2 moves as described in Sect. 6.

5.2 Weak Barycentric Arcs

It will be useful to have a mild generalization of barycentric arcs that allows for neg-
ative barycentric coordinates. Identify R

3 with the hyperplane
∑

i xi = 1 in R
4. The

barycentric coordinates (x1, x2, x3, x4) associated to the vertices of the standard sim-
plex inR4 extend to all ofR3. Aweak barycentric coordinate is a tuple (x1, x2, x3, x4)
describing a point in this hyperplane. Identifying a tetrahedron τ in T with the stan-
dard 3-simplex in R4, a weak barycentric point in τ is a weak barycentric coordinate
defining a point in the hyperplane

∑
i xi = 1. A weak barycentric arc a is a pair of

weak barycentric points (u, v) associated to a tetrahedron τ .
Note that a weak barycentric arc does not generally define a geometric object in

the triangulation T . However, a weak barycentric arc may contain a sub-arc that is
a genuine barycentric arc. From our identification of τ with the standard 3-simplex
inR4, the intersection of a weak barycentric arc with the standard simplex is a possibly
empty barycentric arc. As ultimately we only want to work with barycentric arcs, we
use a trimming procedure that takes a weak barycentric arc a in τ and replaces it with
the maximal barycentric arc it contains.

123

134 Discrete & Computational Geometry (2024) 71:121–159

Fig. 7 Two bipyramids with superimposed triangulations corresponding to before and after applying the
4→ 4 move and 2→ 3 or 3→ 2 moves

Fig. 8 Cartoon showing the difficulty of doing a 2→ 0 move with arcs present. At left, the two tetrahedra
in the pillow to be collapsed are shaded. Here, you should regard the vertical purple arc as the valence-2
edge, with the blue and red dots opposite being cross-sections of the two edges of the pillow that become
identified in the collapse. The problem is that we have to push all the topology of the link out of the pillow
before we collapse it, requiring us to move arcs into many of the tetrahedra adjacent to the pillow

5.3 Putting the Problem intoR3

Wemodel the simple Pachner moves as a pair of triangulations of concrete bipyramids
in R3. We can identify the tetrahedra in T and S involved in the move with tetrahedra
in the corresponding bipyramid. This identification allows us to map barycentric arcs
from T intoR3 and then to map these arcs inR3 back to S. Combining these processes
transfers arcs from T to S. We explain this in detail for the 2→ 3 move.

Recall that the 2→ 3 move takes two tetrahedra glued along a face F , deletes
the face F , adds a vertical edge, and re-triangulates so that there are three tetrahedra
assembled around the new vertical edge; see Fig. 4. The bipyramid is built from a pair
of tetrahedra�N and�S inR3 sharing a single face. Let A = (3, 0, 0), B = (0, 0, 3),
and C = (0, 3, 0) be the corners of the common face and let N = (0, 0, 0) and
S = (2, 2, 2) be corners of the bipyramid lying over and under the common face.
These particular points are chosen as they are symmetric with respect to affine maps.
There is also a triangulation of this bipyramid consisting of three tetrahedra assembled
around a central edge running from N to S. We label these tetrahedra �A,�B,�C ,
where �A is the tetrahedron excluding A, and likewise for B and C . The 2→ 3 move
replaces the 2-tetrahedron triangulation with this 3-tetrahedron triangulation.

123

Discrete & Computational Geometry (2024) 71:121–159 135

Let τN and τS be tetrahedra in T sharing a face F . To do the 2→ 3 move deter-
mined by the face F while preserving the barycentric arc data, we map the arcs in
τN and τS into the model bipyramid in R

3 using the barycentric coordinates. We
first require a fixed map from the vertices of τN and τS to the bipyramid of R3. The
particular assignment is determined by whether the move is called from the point of
view of τN or τS and from the internal labeling of the vertices of the face F . We use
a map identifying τN with �N and τS with �S . We also require a map identifying
the three new tetrahedra in S with the tetrahedra �A,�B ,�C in the other triangu-
lation of the bipyramid. In S, let σA, σB , and σC be the three tetrahedra incident the
new central edge. For precise details on these vertex correspondences, see the file
barycentric_geometry.py in [20].

Barycentric coordinates in (τN , τS) and (σA, σB, σC) determine unique points in
the bipyramid via the vertex correspondence and the barycentric coordinates of the
two triangulations of the bipyramid. This then determines a map sending barycentric
arcs from T and S to arcs in the bipyramid. If a is a barycentric arc in a tetrahedron
τ in T or S, let arc_embeddingτ (a) be the corresponding arc in the bipyramid.

Remark 5.1 It is crucial thatwe check if the arcs in the bipyramid are in general position
(in the sense of Sect. 2.2) with the 3-tetrahedron triangulation. For example, it can
happen that an arc that is disjoint from the 1-skeleton of the 2-tetrahedron triangulation
of the bipyramid intersects the vertical edge in the 3-tetrahedron triangulation. When
there is any such general position failure, we perturb the north and south poles of the
bipyramid slightly and repeat the above process.

PL arcs in the bipyramid can also be described by barycentric arcs in T and S. Given
distinct points p and q in the bipyramid, there is a sequence of barycentric arcs a j

contained in either (τN , τS) or in (σ0, σ1, σ2), such that the line segment between p
and q is the concatenation of the line segments arc_embeddinga j .tet(a j), where
a j .tet is the tetrahedron containing a j . This is done by describing the line segment
from p to q as a weak barycentric arc ap,q(τ) for each tetrahedron τ in the relevant
triangulation, then trimming theseweak barycentric arcs. The function that takes an arc
a in the bipyramid and adds this sequence of barycentric arcs to the tetrahedra (τN , τS)

or (σA, σB, σC) in T orS is denotedarc_pullbackT (a) orarc_pullbackS(a).

5.4 Transferring the Arcs

By combining arc_pullback and arc_embedding, we define a function
transfer_arcs that takes barycentric arcs in T , maps them into the bipyramid,
then pulls them back to S. This enables us to build a version of the 2→ 3 move that
transfers arcs from T to S:

Algorithm 5.2 with_arcs[2→ 3]
1. Identify τN with �N and τS with �S in the bipyramid in R3.
2. Do the 2→ 3 move to get new tetrahedra in S that are identified with the

corresponding tetrahedra in the 3-tetrahedron triangulation of the bipyramid.

123

136 Discrete & Computational Geometry (2024) 71:121–159

straighten

push

Fig. 9 The straightenmove removes unnecessary bends in the link, and the pushmove reduces unnecessary
intersections with the 2-skeleton

3. Apply transfer_arcs: for each arc a in τN and τS , append
arc_embeddinga.tet(a) to the list arcs. For each arc b in arcs, apply
arc_pullbackS(b).

The above approach is easily modified to accommodate the 3→ 2 move. For the
4→ 4 move, this approach works with minor modifications if one uses a bipyramid
with square base. We therefore can can implement methods with_arcs[3→ 2] and
with_arcs[4→ 4] that handle barycentric arcs.

5.5 Simplifying Arcs

Given the inputs (a) and (b) of Sect. 1.2, the Pachner moves with arcs machinery
always produces the desired link L in the base triangulation T0. However, even in the
smallest examples, applying the sequence of Pachner moves to T produces incredibly
complicated configurations of arcs in T0 encoding L . This complexity makes neces-
sary computational geometry tasks prohibitively expensive. Fortunately, much of this
complexity is not topologically essential, and the number of arcs can be decreased
dramatically by the basic simplifications we now describe. Without these, applying
our full algorithm to an ideal triangulation T̊ with just two tetrahedra resulted in 838
arcs and an initial link diagram with 5130 crossings; with the simplifications, there
are 19 arcs and 35 crossings. A 3-tetrahedra ideal triangulation resulted in 129,265
arcs compared to 27 with simplifications. An example with ten tetrahedra would be
impossible without these simplifications. Our two kinds of simplification moves are
shown in Fig. 9.

123

Discrete & Computational Geometry (2024) 71:121–159 137

The first is straighten, which takes as input a tetrahedron τ with barycentric
arcs. It then checks for each arc a in τ if the pair of arcs a and b = a.next can
be replaced with a single arc that runs from a.start and b.end. The check is that
no other arc in τ has an interior intersection with the triangle spanned by a and b.
The other move is push, which removes unnecessary intersections with T 2. When a
starts on the same face F that b = a.next ends on, it checks whether any other arc
intersects the triangle a and b span. If there are none, the move replaces a and b with
an arc in the tetrahedron τ ′ glued to τ along F . This often produces a bend that can
then be removed by a straighten move.

5.6 Putting the Pieces Together

Let T be a layered filling triangulation with arcs encoding the core curves of the filling
and let (Pi) be simple Pachner moves reducing T to T0. By factoring any 2→ 0 or
0→ 2 moves, see Sect. 6, we can always turn a sequence of Pachner moves into a
sequence of simple Pachner moves. Our process for producing a barycentric link in
T0 that is isotopic to the initial L is:

Algorithm 5.3 with_arcs[apply_Pachner_moves](T , (Pi))

Start with T ′ := T and loop over the P1, P2, . . . , Pn as follows:

1. Apply with_arcs[Pi] to T ′ to get PiT ′ with arcs representing L . Set T ′ :=
PiT ′.

2. Loop over the tetrahedra τ in T ′, applying push and straighten until the arcs
stabilize.

5.7 Computational Geometry Issues

Our algorithm requires many geometric computations with barycentric arcs, e.g. to
test for one of our simplifying moves and to ensure we do not violate the general
position requirement of Sect. 2.2. Difficult and subtle issues can arise here, and much
work has been done to ameliorate them; see [59] for a survey. We took the approach
of having all coordinates in Q so that we can do these computations exactly. This
entails a stiff speed penalty and leads to points represented by rational numbers with
overwhelmingly large denominators.

We handle such denominators by rounding coordinates at each stage. As long as
the rounding process does not move the endpoint of an arc more than one-fourth the
minimum distance between any pair of arcs in the link, the isotopy class of the link
is unchanged by rounding, see [64, p. 316]. We therefore guarantee correctness by
computing the minimum distance between arcs at every step of the algorithm and then
varying the rounding precision accordingly.

Alternatively, when the input manifold is hyperbolic, one can generally efficiently
certify correctness of the output diagram after the fact by checking that its exterior is
homeomorphic to the manifold in part (a) of the input. This is only marginally faster
than dynamically varying the rounding precision in our current implementation, so the

123

138 Discrete & Computational Geometry (2024) 71:121–159

Fig. 10 At top, a cross section of a 0→ 2 move; at bottom is a close-up of the inflation of the pillow. The
move is performed on the pair of green faces meeting along the purple edge e at left. The resulting pillow
is a bird beak, which splits open the book of tetrahedra about e. In the top right, the purple and black dots
give edges that join together above and below the cross section

final version only uses the approach that is independent of hyperbolicity. However,
this does give us a completely independent check on the correctness of our code.

6 Factoring the 2-to-0 Move

As mentioned in Sect. 5.1, we factor each 2→ 0 move into a sequence of 2→ 3 and
3→ 2 moves so that we can carry along the barycentric link. This factorization is
quite delicate in certain unavoidable corner cases; we next outline our method and
then provide a detailed account in Sect. 6.1. To begin to understand the 2→ 0 move,
first consider its inverse 0→ 2 move shown in Fig. 10. The possible 0→ 2 moves in
Fig. 10 correspond to a pillow splitting open the book of tetrahedra around the edge e.
Following [63], we call this pillow a bird beak with upper and lower mandibles that
pivot around the two outside edges of the beak (viewed from above, these are the
purple and black vertices in the top right of Fig. 10). On both sides of the bird beak
are half-books of tetrahedra, together forming a split-book. When applying the inverse
2→ 0 move, the two half-books combine to form a book of tetrahedra assembled
around the central edge.

The simplest 2→ 0 move is when there are two valence-2 edges that are oppo-
site each other on a single tetrahedron, as shown in Fig. 11; equivalently, one of
the half-books has a single tetrahedron. This base case is handled by Matveev’s V
move, the composition of four 2→ 3 and 3→ 2 moves of [46, Fig. 1.15]. To reduce
other instances of the 2→ 0 move to the base case, we rotate a mandible of the bird
beak, moving tetrahedra from one half-book to the other until one contains only a
single tetrahedron. Because the tetrahedra in the split-book may repeat or be glued
together in strangeways, this is rather delicate.When things are sufficiently embedded,
Segerman [63] showed:

123

Discrete & Computational Geometry (2024) 71:121–159 139

Fig. 11 The base case of the 2→ 0 move at top with the cross section at bottom

Fig. 12 The endpoint-through-endpoint move in a special spine

Proposition 6.1 Suppose e is a valence-2 edge where the half-books adjacent to the
bird beak are embedded and contain m and n tetrahedra respectively. Then the 2→ 0
move can be implemented by at most 2 ·min(m, n)+2 basic 2 → 3 and 3 → 2moves.

Proof We can rotate a mandible by one tetrahedron using the two basic moves of
[63, Fig. 11]. With min(m, n) − 1 such rotations we can reduce the smaller of the
half-books to a single tetrahedron. As already noted, the base case can be done in four
moves. ��
Remark 6.2 One cannot in general factor a 2→ 0 move into a sublinear number of
2→ 3 and 3→ 2 moves: the 2→ 0 move amalgamates two edges of valence m + 1
and n + 1 into a single edge of valence m + n, and each 2→ 3 or 3→ 2 move only
changes valences by a total of 12 (counting with multiplicity).

The tricky case is when additional faces of the bird beak are glued to each other.
There are two fundamentally differentways for this to happen, shown in Figs. 18 and 19
of Sect. 6.1. The untwisting of these extremely confusing arrangements is done by the
endpoint-through-endpoint move of Fig. 12, which is in the dual language of special
spines from Sect. 6.1. Matveev’s factorization of the endpoint-through-endpoint move
is described in [46, Fig. 1.19]. We simplify this factorization from 14 moves to 6; the
key is Proposition 6.4. This simplification was essential for determining the exact

123

140 Discrete & Computational Geometry (2024) 71:121–159

Fig. 13 The T move in the special spine dual to the 2→ 3 move

Fig. 14 The lune move L in the special spine dual to the 0→ 2 move

Fig. 15 Matveev’s V move

sequence of moves needed to factor the 2→ 0 move. Dual to the endpoint-through-
endpoint move are a pair of untwist the beak moves, one for each of the situations in
Figs. 18 and 19, see Sect. 6.1. We can thus factorize the 2→ 0 move as follows:

Algorithm 6.3 factor[2→ 0]

1. If we are in the base case, do the sequence of moves in the triangulation dual to
the factorization of the V move in [46, Fig. 1.15] and exit.

2. If we are in the twisted cases described by Figs. 18 and 19 in Sect. 6.1, do
the appropriate untwist the beak move. Otherwise, rotate the mandible by one
tetrahedron.

3. Go to to step 1.

123

Discrete & Computational Geometry (2024) 71:121–159 141

Fig. 16 The endpoint-through-vertexmove on a special spine. There are three vertices of the singular locus
in both configurations. This is dual to the move rotating a mandible

6.1 Dealing with Twisted Beaks Using Special Spines

In this section, we detail how to handle the situation where additional faces of the
bird beak are identified, which can happen because the tetrahedra in the split-book,
shown in the upper-right of Fig. 10, may repeat or be glued together in strange ways.
To handle this delicate issue, we need to take the dual viewpoint.

Dual to a triangulation is a special spine. A spine of a compact 3-manifold M with
nonempty boundary is a polyhedron P such that M collapses to P . A spine of a closed
3-manifold M is a spine of the complement of an open ball in M . Any triangulation T
of M determines a dual cellulation S whose 2-skeleton is a spine, see [46, Fig. 1.5];
the class of such spines are the special spines,

The Pachner moves correspond to dual moves in the special spine. Generally, it
is easier to reason about the dual moves modifying special spines, as there is a type
of graphical calculus. The move on a special spine dual to the 2→ 3 is called the T
move and its inverse dual to the 3→ 2 move is denoted T−1, see Fig. 13. The special
spine move corresponding to the 0→ 2 move is the lune move shown in Fig. 14, and
is denoted L . The move dual to 2→ 0 is the inverse lune move L−1. It is also useful
to have a certain compound move, Matveev’s V move, shown in Fig. 15, which is a
special case of the lune move that can be realized as a sequence of four T and T−1

moves [46, Fig. 1.15]. Matveev showed that generally the 0→ 2 and 2→ 0 moves
can be factored as a sequence of 2→ 3 and 3→ 2 moves. In this section, we describe
a simplification of one part of Matveev’s factorization, reducing the number of moves
necessary for that part from 14 to 6.

The first move we need to transfer tetrahedra from one half-book to the other is the
dual version of the endpoint-through-vertex move in Fig. 16. The endpoint-through-
vertex move involves a single T and T−1 move. When the split-book is not twisted in
strange ways, this move suffices to reduce to the base case. A thorough account of this
move, describing both the triangulation and special spine versions, is given in [63].

The special spine move needed to deal with twisted half-books is the endpoint-
through-endpoint move pictured in Fig. 17. A factorization of the endpoint-through-
endpoint move is given in [46, Fig. 1.19], and it is this factorization that we simplify

123

142 Discrete & Computational Geometry (2024) 71:121–159

Fig. 17 The endpoint-through-endpoint move in a special spine. There are only two vertices of the singular
locus in each picture. You can walk through the “tunnel” starting in the lower left and end up “behind” the
vertical blue wall; in contrast, the back tunnel dead-ends into the vertical blue wall. This move is needed to
reduce to the base case when the tetrahedra in the split-book are twisted up in various ways. We implement
this move for the dual triangulation as a sequence of six 2→ 3 and 3→ 2 moves

from 14 to 6 moves. Converting from the spine version of the endpoint-through-
endpoint move to the triangulation version is quite subtle, so reducing the number of
moves in the factorization is incredibly helpful.

Our simplification of the factorization is in fact a simplification of one part of
the endpoint-through-endpoint move. Specifically, the factorization in [46, Fig. 1.19]
consists of three stages. The first stage uses the move sequence V , T , T−1, the second
the sequence T , T−1, and the final stage is, up to taking the mirror image, the inverse
of the first stage. Expanding V to its four constituent T and T−1 moves means both the
first and third stages require six T and T−1 moves each. However, the next proposition
shows that one only needs two T moves for each of these stages, saving us eight moves
overall:

Proposition 6.4 The below move on a special spine can be achieved by two T moves:

There are two vertices initially, and four at the end. You can enter any of the lower
tunnels from the top-left green region; for the U-tunnel at right you would reach a
dead-end at the vertical blue wall at μ.

Proof Zooming in on the part of the figure near the vertices, we see:

123

Discrete & Computational Geometry (2024) 71:121–159 143

ε
εε

We can then realize the move as follows:

1. Rotate the walls left of α:

ε

2. Fold so α, ε, and γ are in the same plane:

ε

3. Follow [46, Fig. 1.15] to obtain:

viewed head-on

ε

4. Redraw as:

ε

123

144 Discrete & Computational Geometry (2024) 71:121–159

5. Reverse the folds to obtain:

ε

This completes the proof. ��
Corollary 6.5 The endpoint-through-endpoint move can be completed as a sequence
of six moves using the moves T and T−1 dual to the 2→ 3 and 3→ 2 moves.

Proof Following [46, Fig. 1.19], the endpoint-through-endpoint move is obtained
doing the move in Proposition 6.4, then doing one T and one T−1 move, and ending
with the inverse of Proposition 6.4. ��
We now need to dualize the endpoint-through-endpoint move to the triangulation
setting. We call the dual version of the endpoint-through-endpoint move the untwist
the beak move. Suppose we have a bird beak in a split-book of tetrahedra. There are
two possible twisted complexes contained in a half-book that can arise, preventing
us from rotating the mandible using the dual endpoint-through-vertex move. Both of
these are overcome using the untwist the beak move.

In the first twisted case, there are at least two distinct tetrahedra glued to the front of
the pillow, and the back of the pillow is glued to itself as indicated in Fig. 18, producing
a solid torus. In this case, the half-book around the front edge and the half-book around
the back edge overlap. In Fig. 18, the leftmost and rightmost tetrahedra in the front
half-book, labeled X and Y , appear in both the front and back half-books.

The other possible twisted case involves a front face of the pillow being glued to
the back face of the pillow, as indicated in Fig. 19. In this case, the front tetrahedron
of the pillow is part of the half-book around the back edge, and the back tetrahedron
of the pillow is part of the half-book around the front edge.

For both possible twisted cases, the particular sequence of 2→ 3 and 3→ 2 moves
corresponding to factorization of the endpoint-through-endpointmove inCorollary 6.5
was found by searching possible sequences, using the valences of various edges as
a guide. More details on the sequence can be found in the implementation, see the
file mcomplex_with_expansion.py in [20]. The factorization of the 2→ 0
described at the end of Sect. 6 then follows.

7 Building the Initial Diagram

The base triangulation T0 of S3 has two tetrahedra and one vertex and is shown in
Fig. 20; its isomorphism signature in the sense of [10, Sect. 3.2], which completely
determines the triangulation, is cMcabbgdv. We next give the method for obtaining

123

Discrete & Computational Geometry (2024) 71:121–159 145

0

1
3

2

0

1
2

3

0

1

2
3

0

1

2 3

Fig. 18 One of the possible twisted complexes in a split-book of tetrahedra. Here, the tetrahedron F sits in
front of B forming the valence-2 edge; said edge connects vertices 2 and 3 in both tetrahedra, with the pair
of opposite edges joining vertices 0 and 1 forming the “equator” around it. The back tetrahedron B forms
a solid torus with its back two faces glued as indicated by the labels {a, b, c}. The face opposite vertex 2 in
tetrahedron X is glued to the face of F opposite vertex 3 so that the two edges connecting vertices 0 and 1
coincide; the tetrahedron Y is glued to F analogously

0

1

2

3

0

1

2 3

0

1

2 3

0

1

2

3

Fig. 19 Another possible twisted complex in a split-book of tetrahedra. The tetrahedron F sits in front of B
forming the valence-2 edge as in Fig. 18. These tetrahedra share a third pair of faces (shaded with corners
labeled {a, b, c}) which must be offset as shown as otherwise the 2→ 0 move would change the topology.
Here, the back face of X is glued to the unshaded front face of F so that the vertices 0 and 1 coincide;
similarly, the front face of Y is glued to unshaded back face of B so that the vertices 0 and 1 coincide

a planar diagram D for a barycentric link L in T0. We first build a PL link in R
3

representing L and then project it onto a plane to get D.
We cut open T0 along its faces and embed the resulting pair of tetrahedra in R

3

as shown in Fig. 20. This cuts open the link L along its intersections with the faces
of T0, resulting in a collection of curves in R3 inside the two tetrahedra. To reconnect
these curves and recover L , we use fins and lenses as shown in Fig. 21 to interpolate
between pairs of faces that are identified in T0. There are two triangular fins, one
attached vertically to each tetrahedron, with each fin corresponding to one of the two
valence-1 edges of T0. The gluing of two faces incident to a valence-1 edge is realized
by folding them onto the corresponding fin. Thus for each barycentric arc that ends in

123

146 Discrete & Computational Geometry (2024) 71:121–159

2

1
3

0

3 2

0

1

023 123

213 013

031

021

012

032

Fig. 20 The base triangulation T0 in R
3

Fig. 21 Two views of the same link realized by the base triangulation T0 using the fins and lenses shown

123

Discrete & Computational Geometry (2024) 71:121–159 147

a face corresponding to a fin, we add the line segment joining this endpoint of the arc
to the corresponding point in the fin.

The two triangular lenses lie between the two tetrahedra in a horizontal plane.
There is an affine map taking the corresponding face in the top tetrahedron to its
lens and a second affine map taking the lens to the corresponding face in the bottom
tetrahedron, arranged so their composition is the face pairing in T0. For every arc in
the top tetrahedron ending on a face corresponding to a lens, we add the line segment
between the endpoint and its image under the affine map to the lens. For each such
segment that terminates on a lens, we add the line segment from this endpoint to its
image in the face of the bottom tetrahedron under the affine map. This results in a PL
link inR3 ⊂ S3 that must be isotopic to L: just imagine puffing out the two tetrahedra
to fill all of S3 following the guides given by the fins and lenses.

Given a collection of line segments in R
3 corresponding to the link L , we can

build a diagram for L by projecting the line segments onto a plane, computing the
crossing information, and assembling this into a planar diagram. Our default choice
is roughly to project onto the plane of the page in Fig. 21, with the (so far unused)
fall-back of a small random matrix in SL3Z if a general-position failure occurs. The
link diagrams resulting from this process have many more crossings than is necessary,
and we deal with this in Sect. 8. Still, the specific configuration of fins, lenses, and
projection was chosen to try minimize the number of crossings created at this stage;
our initial approach used a more compact embedding where the tetrahedra shared a
face, and this produced much larger diagrams.

8 Simplifying Link Diagrams

We now sketch how we simplified the initial link diagram constructed in Sect. 7,
which sometimes had 10,000–100,000 crossings, to produce the final output of our
algorithm for Find Diagram. Previous computational work focused on simplifying
diagrams with 20 or fewer crossings [12, 33]. In that regime, random Reidemeister
moves combined with flypes are extremely effective in reducing the number of cross-
ings. However, these techniques alone proved inadequate for our much larger links.
Instead, we used the more global strand pickup method of Fig. 22. This technique
was introduced by the second author and included in SnapPy [18] since version 2.3
(2015), but not previously documented in the literature. It has similarities with the arc
representation/grid diagram approach of [22–24], but it works with arbitrary planar
diagrams. When applying the pickup move, we start with the longest overstrands and
work towards the shorter ones if no improvement is made. When a pickup move suc-
ceeds, we do more basic simplifications before looking for another pickup move. We
also do the same move on understrands, going back and forth between the two sides
until the diagram stabilizes; for details, see [51]. The high amount of simplification and
sub-quadratic running time are shown in Fig. 23. As further evidence of its utility, we
note that it strictly monotonically reduces the unknot diagrams D28, D43, and PZ78
in [16] to the trivial diagram; in contrast, these require adding at least three crossings
if one uses only Reidemeister moves.

123

148 Discrete & Computational Geometry (2024) 71:121–159

Fig. 22 An example of the strand pickup method for diagram simplification. At left, an overstrand, which
runs over each crossing it participates in, is indicated by the darker line. At right is the result of isotoping
the verstrand, fixing its endpoints, to get a diagram with fewer crossings. The best possible location for an
overstrand can be found by solving a weighted shortest-path problem in the planar dual graph to the original
diagram

Fit: = 0 .804,
log 0.765 log − 0 .224

Crossings in input diagram

102 103 104 105

C
ro
ss
in
gs

in
ou
tp
ut

di
ag
ra
m

101

102

103

104

Fit: = 0 .926,
log 1.46 log − 4 .02

Crossings in input diagram

102 103 104 105

T
im

e
to

si
m
pl
if
y
(s
ec
on
ds
)

10−2

10−1

100

101

102

103

Fig. 23 Simplifying 300 diagrams with between 19 and 32,095 crossings, drawn from Sects. 10 and 11.3.
The dramatic amount of simplification is shown at left, with an n-crossing knot turned into one with O(n0.8)
crossings. The running time shown on the right is roughly O(n1.5)

9 A Lower Bound on Computational Complexity

In this section, we show that the worst-case complexity of Find Diagram is at least
exponential by exhibiting inputs where any outputmust be exponentially large. Specif-
ically, let Fn be the Fibonacci sequence and α = (

1 + √
5
)
/2 ≈ 1.618 be the golden

ratio. Let Kn be the torus knot T (Fn, Fn−1). Then:

Theorem 9.1 There is an ideal triangulation of E(Kn) with O(n) tetrahedra, but the
minimum crossing number of Kn is Fn−1(Fn − 1) ∼ α2n−1/5.

Wenow give the short proof, which is similar to the analysis of the complexity of a nor-
mal meridional disk in a minimal triangulation of a layered solid torus in [38, Sect. 5].

Proof Set p = Fn and q = Fn−1. The claim about the crossing number of Kn is
[49, Prop. 7.5]. For the ideal triangulation of E(Kn), first we construct a 1-vertex
triangulation T of S3 where Kn is an edge. We do this by gluing two layered solid

123

Discrete & Computational Geometry (2024) 71:121–159 149

tori (see Sect. 3) to form the genus-1 Heegaard splitting of S3 so that the torus knot
Kn is an edge on their common interface. Since the partial quotients of the continued
fraction expansion of p/q are all 1, this requires only O(n) tetrahedra, see [40]. Now,
take the second barycentric subdivision of T and delete the interior of the link of Kn to
get a triangulation T ′ of the compact manifold E(Kn) with O(n) tetrahedra. Finally,
crush as in [37, Thm. 7.1] to get an ideal triangulation T̊ for E(Kn) with no more
tetrahedra than T ′. ��

10 Implementation and Initial Experiments

We implemented our algorithm in Python, building on the pure-Python t3mlite
library for 3-manifold triangulations that is part of SnapPy [18].We also used SnapPy’s
C kernel to produce the layered filled triangulation T of Sect. 2.3 from the input
ideal triangulation T̊ . The needed linear algebra over Q was handled by PARI.1 Not
including these libraries, our implementation consists of 1800 lines of Python code.
We had to put considerable effort into optimization to handle examples as large as that
shown in Fig. 3. Our code and data is archived at [20] and has been incorporated into
version 3.1 of SnapPy [18].

To validate our implementation, we applied it to two sample sets, one where the
inputs were small and one where the best-possible outputs were small. The first, CK,
is the 1267 hyperbolic knots whose exteriors have ideal triangulations with at most
nine tetrahedra [5, 19]. The second, SK, consists of 1000 knots with minimal crossing
numbers between 10 and 19. Specifically, SK has 100 knots for each crossing number
in that range, which were selected at random from all the hyperbolic nonalternating
knots with that crossing number [12]; the exception is that there are only 41 such
10-crossing knots, so 59 alternating 10-crossing knots were used as well. (Alternating
knots have unusually close connections between their diagrams and exteriors, so were
excluded as possibly being an easy case for Find Diagram.)

Our program found diagrams for all 2267 of these exteriors. The running time
was under 20 seconds for 96.7% of them, with a max of 2.5 min (CPUs were Intel
Xeon E5-2690v3 at 2.6GHz with 4GB of memory per core, ca. 2014); see Fig. 24.
The input ideal triangulations T̊ had between 2 and 44 tetrahedra, and the resulting
layered filling triangulation T had between 13 and 77 tetrahedra (mean of 31.5),
typically 60% larger than T̊ ; see Fig. 25. The sequence of simple Pachner moves used
to reduce T to T0 had length between 39 and 761 (mean of 241.0), see Fig. 26; this was
typically 7.5 times longer than the initial sequence of Pachner moves that included
2→ 0moves (Fig. 27). For the knots inSK, we compare the size of the output diagram
to the minimal crossing number in Fig. 28; the output matched the crossing number
for 42.1% of these exteriors, and it was within 3 for 87.8%. For CK, the maximal
number of crossings in the output was 303, with mean output crossing number 65.9,
and median output crossing number 40.

1 PARI/GP v.2.11.4 (2020). The PARI Group, University of Bordeaux. http://pari.math.u-bordeaux.fr.

123

http://pari.math.u-bordeaux.fr

150 Discrete & Computational Geometry (2024) 71:121–159

Fit: log 0.031 + 0 .114, = 0 .850

Ideal tetrahedra in

0 5 10 15 20 25 30 35 40 45

R
un

ni
ng

tim
e
(s
ec
on

ds
)

100

101

102

Fig. 24 Mean running time for the 2267 knot exteriors in SK and CK appears exponential with small base,
roughly O(1.07n). Compare Fig. 29 on the growth of the number of arcs in T0

Fit: 1.58 + 7 .64, = 0 .989

Ideal tetrahedra in

0 5 10 15 20 25 30 35 40 45

T
et
ra
he
dr
a
in

la
ye
re
d
fil
le
d

10

20

30

40

50

60

70

80

Fig. 25 The number of tetrahedra in the layered filled T compared to the input ideal T̊

123

Discrete & Computational Geometry (2024) 71:121–159 151

Fit: 9.43 − 56 .4, = 0 .923

Tetrahedra in

10 20 30 40 50 60 70 80

Si
m
pl
e
Pa
ch
ne
r
m
ov
es

0

100

200

300

400

500

600

700

800

Fig. 26 The number of simple Pachner moves used to transform the layered filled triangulation T into the
base triangulation T0 is generically linear in the size of T

Fit: 7.52 − 41 .4, = 0 .896

General Pachner moves from to 0

25 50 75 100 125 150 175

Si
m
pl
e
Pa
ch
ne
r
m
ov
es

0

100

200

300

400

500

600

700

Fig. 27 This plot shows the increase in the number of Pachner moves when we factor the 2→ 0 moves into
simple Pachner moves. The regression line is based on points with x < 75

123

152 Discrete & Computational Geometry (2024) 71:121–159

Minimal crossing number

10 12 14 16 18

C
ro
ss
in
gs

in
ou

tp
ut

10

15

20

25

30

Fig. 28 For the knots inSK, grouped byminimum crossing number, the number of crossings in the diagram
output by our program. The dotted line indicates the mean

Fit: log 0.013 + 1 .52, = 0 .573

Ideal tetrahedra in

0 5 10 15 20 25 30 35 40 45

N
um

be
r
of

ar
cs

in
0

101

102

5 × 102

Fig. 29 The number of barycentric arcs when we arrive at T0 appears exponential in the size of the input T̊ ,
roughly O(1.03n)

123

Discrete & Computational Geometry (2024) 71:121–159 153

Hyperbolic volume

0 100 200 300

C
ro
ss
in
gs

0

500

1000

1500

2000

2500 Fit: = 0 .946,
log 1.356 log − 0 .480

Hyperbolic volume

101 102

C
ro
ss
in
gs

101

102

103

Fig. 30 The 38 known link diagrams whose exteriors are principal congruence arithmetic; blue are the 15
from [7], yellow are new. The plots are the same except for the scales on the axes. The regression at right
predicts that our algorithm would produce a diagram for the link for the largest such exterior with about
9000 crossings

(0, 1)

(−5 , 1)

(0, 1)

Fig. 31 A Dehn surgery description of the Seifert–Weber dodecahedral space

11 Applications

11.1 Congruence Links

Powerful tools from number theory apply to the special class of arithmetic hyper-
bolic 3-manifolds. Thurston asked which link exteriors are in the subclass of principal
congruence arithmetic manifolds; this was resolved in [6]: there are exactly 48 such
exteriors. These 48 have hyperbolic volumes in [5.33348, 1365.37] and ideal trian-
gulations with between 6 and 1526 tetrahedra. Link diagrams for 15 of these 48 had
previously been found by ad hoc methods [7]. Our program has found diagrams for 23
more, including Figs. 2 and 3; collectively, we now have links for the 38 such exteriors
of smallest volume, see Fig. 30.

123

154 Discrete & Computational Geometry (2024) 71:121–159

11.2 Dehn Surgery Descriptions

Every closed orientable 3-manifold is a Dehn filling on some link exterior in S3 [58,
Chap. 9], and such Dehn surgery descriptions play a key role in both theory and prac-
tice. However, finding a Dehn surgery description from e.g. a triangulation can be
extremely challenging. Thurston observed experimentally that, starting with a closed
hyperbolic 3-manifold, one frequently arrives at a link exterior by repeatedly drilling
out short closed geodesics, see page 516 of [2]. Combining this with our algorithm
for Find Diagram gives an effective tool for finding Dehn surgery descriptions given
a triangulation. We applied this to the Seifert–Weber dodecahedral space, which is
an old example [68] still of much current interest [9, 14, 43]. The resulting descrip-
tion in Fig. 31 seems to be the first such published; a different description appeared
subsequently in [4]. One could likely use a similar technique to find Dehn surgery
descriptions of a nonhyperbolic 3-manifold, for example by first removing a compli-
cated knot whose complement is hyperbolic [50] and then proceeding as before, or by
using some other method to select promising curves to drill out.

11.3 Knots with the Same 0-Surgery

The 0-surgery Z(K) on a knot K is the unique Dehn filling N of E(K) where
H1(N ;Q) �= 0. Pairs of knots K and K ′ with Z(K) homeomorphic to Z(K ′) are
of much interest in low-dimensional topology. Most strikingly, if such a pair K and
K ′ exist with K slice (i.e., bounds a smooth D2 in D4) and the Rasmussen s-invariant
of K ′ is nonzero, then the smooth 4-dimensional Poincaré conjecture is false. That is,
there would exist a 4-manifold that is homeomorphic but not diffeomorphic to S4. See
[27, 45] for a general discussion, and also [56] for an important recent result using
pairs with Z(K) ∼= Z(K ′). There are many techniques for constructing families of
such pairs, which have been unified by the red-blue-green link framework of [45].
However, given a particular K , a practical algorithm to search for K ′ with the same
0-surgery has been lacking. When Z(K) is hyperbolic, we attack this as follows. First,
find the short closed geodesics in Z(K) using [32]. Then drill out each geodesic in
turn, and test if the resulting manifold M̊ ′ has a Dehn filling which is S3; if it does,
use our algorithm for Find Diagram to M̊ ′ to get a diagram for K ′.

Figure 32 shows the result of applying our algorithm to 100 pairs (K , γ) where K
is a knot with at most 18 crossings and γ is a short closed geodesic in Z(K) whose
exterior is also that of a knot K ′ in S3. In all cases, we were able to recover a diagram
for K ′, and these were more challenging on average than the examples in Sect. 10.

12 Conclusion and Open Questions

To assess the practical effectiveness of our algorithm for Find Diagram, it is worth
considering how large a link diagram can be used as input for a subsequent compu-
tation. Many key link invariants, such as the Alexander polynomial and the Seifert
genus, can be computed directly (and at least as efficiently) from a triangulation of

123

Discrete & Computational Geometry (2024) 71:121–159 155

Fit: = 0 .574,
61.4 − 2075

Ideal tetrahedra in

Outliers at
(57, 4603) and
(64, 5973) omitted

20 30 40 50 60

C
ro
ss
in
gs

in
ou
tp
ut

0

250

500

750

1000

1250

1500

1750

2000

Fit: = 0 .713,
0.046 − 0 .416

Ideal tetrahedra in

30 40 50 60

R
un
ni
ng

tim
e
(s
ec
on
ds
)

101

102

103

Fit: = 0 .456,
5.40 + 71 .1

Tets in the layered filling

40 50 60 70

Si
m
pl
e
Pa
ch
ne
r
m
ov
es

to
0

200

300

400

500

600

700
Fit: = 0 .478,

1.41 + 254

Pachner moves 0, with 2 0

50 100 150

E
xp
an
de
d
si
m
pl
e
Pa
ch
ne
r
m
ov
es

200

300

400

500

600

700

Fig. 32 Data on the 100 knot exteriors from Sect. 11.3

the link exterior as from the diagram, so we focus on those that require a diagram
to compute. The Jones polynomial is among the simpler such “truly diagrammatic”
invariants, and it is #P-hard [41] to compute, though it is fixed-parameter tractable
in the tree-width of the diagram [44]. Even the very best implementations for com-
puting the Jones polynomial are unable to handle most diagrams with more than 200
crossings [62]. More refined invariants, such as knot Floer homology [53, 66] and
Khovanov homology [8, 61, 62], are typically impractical above 50–100 crossings, or
even less depending on the precise variant.

As Fig. 32 demonstrates, our implementation easily finds link diagrams which are
too big to allow computation of such diagrammatic invariants. While these diagrams
presumably do not minimize the number of crossings, we expect they are close enough
that the point still stands. Alternatively, recall the diagram in Fig. 2 produced by our
algorithm has 294 crossings, and, by volume considerations, any diagram of this
link must have at least 66 crossings, and that alone would push the limits of many
diagrammatic calculations.

123

156 Discrete & Computational Geometry (2024) 71:121–159

Given the practical effectiveness of our implementation of FindDiagram, we have
incorporated it as a standard feature of SnapPy [18], so that it can be widely used. We
conclude with several open questions.

1. To what extent can the mean running time of O(1.07n) be reduced? While Theo-
rem 9.1 shows that the worst case running time must be at least exponential, it is
not implausible that the mean running time is polynomial in the size of the output.
The key issue is that the number of arcs in the base triangulation T0 is currently
exponential in the size of both the input and the output, compare Fig. 29. In our
current implementation, as the size of the input exceeds 40 tetrahedra, the com-
putation time becomes dominated by the final diagram simplification step. This
is despite the very favorable O(n1.5) performance of our diagram simplification
algorithm (Fig. 23). This again suggests we need to simplify the barycentric link
more during the Pachner move steps.

2. To reduce the number of arcs when applying Pachner moves, one could consider
additional local PL simplification moves, or try the current moves in larger balls
in T made up of several tetrahedra. We tried using the straighten simplification
method inside the octahedron formed during the 4→ 4 move, but, in the examples
we tested, this had the surprising effect of increasing the number of arcs at the final
stage of the algorithm. We also tried adding more complicated PL simplifications
moves beyond straighten and push, but these had minimal effect.

3. It would be interesting to see if knot energy minimization, see [52] and [64],
provides a practical way to simplify configurations of arcs within tetrahedra or to
simplify the final link in R

3 before projecting.
4. Our algorithm provides a newway tomove in the space of diagrams for a given link:

take a link diagram, produce a triangulation of the exterior, apply Pachner moves
to modify the triangulation, then apply our algorithm to this new triangulation to
obtain a new diagram of the link. It would be interesting to see if this approach
effectively finds simple diagrams of links, or allows us to produce distinct simple
diagrams that require many Reidemeister moves (or many additional crossings) to
go between.

5. Is it possible to find diagrams for the remaining ten congruence link exteriors
discussed in Sect. 11.1?

Supplementary Information

Our code and data is archived at [20]. The earlier proceedings version of this paper
is [21].

Acknowledgements The authorswere partially supported byUSNational Science Foundation grantsDMS-
1510204 andDMS-1811156,withDunfield also being partially supported by aSimonsFellowship.We thank
Matthias Goerner and Henry Segerman for helpful correspondence, and thank each of the referees for their
detailed comments which helped improve this paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

123

Discrete & Computational Geometry (2024) 71:121–159 157

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots.
W.H. Freeman, New York (1994)

2. Adams, C.C.: Isometric cusps in hyperbolic 3-manifolds. Mich. Math. J. 46(3), 515–531 (1999)
3. Adams, C.: Triple crossing number of knots and links. J. Knot Theory Ramif. 22(2), # 1350006 (2013)
4. Baker, K.L.: A sketchy surgery description of the Seifert–Weber Dodecahedral space (2021). https://

sketchesoftopology.wordpress.com/2021/12/09/a-sketchy-surgery
5. Baker, K.L., Kegel, M.: Census L-space knots are braid positive, except one that is not. Algebr. Geom.

Topol. https://msp.org/soon/coming.php?jpath=agt
6. Baker, M.D., Goerner, M., Reid, A.W.: All principal congruence link groups. J. Algebra 528, 497–504

(2019)
7. Baker,M.D.,Goerner,M.,Reid,A.W.:All knownprincipal congruence links (2019). arXiv:1902.04426
8. Bar-Natan, D.: Fast Khovanov homology computations. J. Knot Theory Ramif. 16(3), 243–255 (2007)
9. Bering, E.A. IV: Surgery diagram for the Seifert–Weber space. MathOverflow, question # 137101

(2013). https://mathoverflow.net/q/137101
10. Burton, B.A.: The Pachner graph and the simplification of 3-sphere triangulations. In: 27th Annual

Symposium on Computational Geometry (Paris 2011), pp. 153–162. ACM, New York (2011)
11. Burton, B.A.: Computational topology with Regina: algorithms, heuristics and implementations. In:

Geometry and Topology Down Under. Contemporary Mathematics, vol. 597, pp. 195–224. American
Mathematical Society, Providence (2013)

12. Burton, B.A.: The next 350 million knots. In: 36th International Symposium on Computational
Geometry (2020). Leibniz Int. Proc. Inform., vol. 164, # 25. Leibniz-Zent. Inform., Wadern (2020)

13. Burton, B.A.: The cusped hyperbolic census is complete. Trans. Am. Math. Soc. (2023). https://doi.
org/10.1090/tran/6767

14. Burton, B.A., Rubinstein, J.H., Tillmann, S.: The Weber–Seifert dodecahedral space is non-Haken.
Trans. Am. Math. Soc. 364(2), 911–932 (2012)

15. Burton,B.A.,Budney,R., Pettersson,W.:Regina: software for low-dimensional topology. http://regina-
normal.github.io/

16. Burton, B.A., Chang, H.-Ch., Löffler, M., Maria, C., de Mesmay, A., Schleimer, S., Sedgwick, E.,
Spreer, J.: Hard diagrams of the unknot. Exp. Math. (2023). https://doi.org/10.1080/10586458.2022.
2161676

17. Champanerkar, A., Kofman, I., Mullen, T.: The 500 simplest hyperbolic knots. J. Knot Theory Ramif.
23(12), # 1450055 (2014)

18. Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the
geometry and topology of 3-manifolds, v. 3.1 (2022). https://snappy.computop.org

19. Dunfield, N.M.: A census of exceptional Dehn fillings. In: Characters in Low-Dimensional Topology
(Montréal 2018). ContemporaryMathematics, vol. 760, pp. 143–155. AmericanMathematical Society,
Providence (2020)

20. Dunfield, N.M., Obeidin,M., Rudd, C.G.: Code and data for computing a link diagram from its exterior.
Harvard Dataverse (2022). https://doi.org/10.7910/DVN/BT1M8R

21. Dunfield, N.M., Obeidin, M., Rudd, C.G.: Computing a link diagram from its exterior. In: 38th Inter-
national Symposium on Computational Geometry (Berlin 2022). Leibniz Int. Proc. Inform., vol. 224,
37. Leibniz-Zent. Inform., Wadern (2022)

22. Dynnikov, I.A.: Three-page approach to knot theory. Encoding and local moves. Funct. Anal. Appl.
33(4), 260–269 (1999)

123

http://creativecommons.org/licenses/by/4.0/
https://sketchesoftopology.wordpress.com/2021/12/09/a-sketchy-surgery
https://sketchesoftopology.wordpress.com/2021/12/09/a-sketchy-surgery
https://msp.org/soon/coming.php?jpath=agt
http://arxiv.org/abs/1902.04426
https://mathoverflow.net/q/137101
https://doi.org/10.1090/tran/6767
https://doi.org/10.1090/tran/6767
http://regina-normal.github.io/
http://regina-normal.github.io/
https://doi.org/10.1080/10586458.2022.2161676
https://doi.org/10.1080/10586458.2022.2161676
https://snappy.computop.org
https://doi.org/10.7910/DVN/BT1M8R

158 Discrete & Computational Geometry (2024) 71:121–159

23. Dynnikov, I.A.: Arc-presentations of links: monotonic simplification. Fund. Math. 190, 29–76 (2006)
24. Dynnikov, I., Sokolova, V.: Multiflypes of rectangular diagrams of links. J. Knot Theory Ramif. 30(6),

2150038 (2021)
25. Flapan, E.: When Topology Meets Chemistry. Outlooks. Cambridge University Press, Cambridge

(2000)
26. Flapan, E., He, A.,Wong, H.: Topological descriptions of protein folding. Proc. Natl. Acad. Sci. U.S.A.

116(19), 9360–9369 (2019)
27. Freedman, M., Gompf, R., Morrison, S., Walker, K.: Man and machine thinking about the smooth

4-dimensional Poincaré conjecture. Quant. Topol. 1(2), 171–208 (2010)
28. Gordon, C.McA., Luecke, J.: Knots are determined by their complements. J. AMS 2(2), 371–415

(1989)
29. Greene, J.E.: Alternating links and definite surfaces. Duke Math. J. 166(11), 2133–2151 (2017)
30. Haken, W.: Theorie der Normalflächen. Acta Math. 105, 245–375 (1961)
31. Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems.

J. ACM 46(2), 185–211 (1999)
32. Hodgson, C.D., Weeks, J.R.: Symmetries, isometries and length spectra of closed hyperbolic three-

manifolds. Exp. Math. 3(4), 261–274 (1994)
33. Hoste, J., Thistlethwaite, M., Weeks, J.: The first 1,701,936 knots. Math. Intell. 20(4), 33–48 (1998)
34. Howie, J.A.: A characterisation of alternating knot exteriors. Geom. Topol. 21(4), 2353–2371 (2017)
35. Huszár,K., Spreer, J.: 3-manifold triangulationswith small treewidth. In: 35th International Symposium

on Computational Geometry (Portland 2019). Leibniz Int. Proc. Inform., vol. 129, # 44. Leibniz-Zent.
Inform., Wadern (2019)

36. Ivanov, S.V.: The computational complexity of basic decision problems in 3-dimensional topology.
Geom. Dedicata 131, 1–26 (2008)

37. Jaco, W., Rubinstein, J.H.: 0-efficient triangulations of 3-manifolds. J. Differ. Geom. 65(1), 61–168
(2003)

38. Jaco, W., Rubinstein, J.H.: Layered-triangulations of 3-manifolds (2006). arXiv:math/0603601
39. Jaco, W., Rubinstein, J.H.: Inflations of ideal triangulations. Adv. Math. 267, 176–224 (2014)
40. Jaco, W., Sedgwick, E.: Decision problems in the space of Dehn fillings. Topology 42(4), 845–906

(2003)
41. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte

polynomials. Math. Proc. Camb. Philos. Soc. 108(1), 35–53 (1990)
42. Kuperberg, G.: Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization. Pac. J.

Math. 301(1), 189–241 (2019)
43. Lin, F., Lipnowski, M.: Monopole Floer homology, eigenform multiplicities, and the Seifert–Weber

dodecahedral space. Int. Math. Res. Not. 2022(9), 6540–6560 (2022)
44. Makowsky, J.A.: Coloured Tutte polynomials andKauffman brackets for graphs of bounded tree width.

Discrete Appl. Math. 145(2), 276–290 (2005)
45. Manolescu, C., Piccirillo, L.: From zero surgeries to candidates for exotic definite four-manifolds

(2021). arXiv:2102.04391
46. Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds. Algorithms and Computation

in Mathematics, vol. 9. Springer, Berlin (2007)
47. de Mesmay, A., Rieck, Y., Sedgwick, E., Tancer, M.: The unbearable hardness of unknotting. Adv.

Math. 381, # 107648 (2021)
48. Mijatović, A.: Simplifying triangulations of S3. Pac. J. Math. 208(2), 291–324 (2003)
49. Murasugi, K.: On the braid index of alternating links. Trans. Am. Math. Soc. 326(1), 237–260 (1991)
50. Myers, R.: Simple knots in compact, orientable 3-manifolds. Trans. Am. Math. Soc. 273(1), 75–91

(1982)
51. Obeidin, M.: Link simplification code for Spherogram. https://github.com/3-manifolds/Spherogram/

blob/master/spherogram_src/links/simplify.py
52. O’Hara, J.: Energy of a knot. Topology 30(2), 241–247 (1991)
53. Ozsváth, P., Szabó, Z.: Bordered knot algebras with matchings. Quant. Topol. 10(3), 481–592 (2019)
54. Pachner, U.: P.L. homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Combin.

12(2), 129–145 (1991)
55. Peddada, S.R.T., Dunfield, N.M., Zeidner, L.E., James, K.A., Allison, J.T.: Systematic enumeration

and identification of unique spatial topologies of 3D systems using spatial graph representations. In:
47th Design Automation Conference (2021). International Design Engineering Technical Conferences

123

http://arxiv.org/abs/math/0603601
http://arxiv.org/abs/2102.04391
https://github.com/3-manifolds/Spherogram/blob/master/spherogram_src/links/simplify.py
https://github.com/3-manifolds/Spherogram/blob/master/spherogram_src/links/simplify.py

Discrete & Computational Geometry (2024) 71:121–159 159

& Computers and Information in Engineering Conference, vol. 3A, # V03AT03A042. ASME, New
York (2021)

56. Piccirillo, L.: The Conway knot is not slice. Ann. Math. 191(2), 581–591 (2020)
57. Piergallini, R.: Standard moves for standard polyhedra and spines. In: 3rd National Conference on

Topology (Trieste 1986). Rend. Circ. Mat. Palermo Suppl., vol. 18, pp. 391–414. Circolo Matematico
di Palermo, Palermo (1988)

58. Rolfsen, D.: Knots and Links. Mathematics Lecture Series, vol. 7. Publish or Perish, Houston (1990)
59. Schirra, S.: Robustness and precision issues in geometric computation. In: Handbook of Computational

Geometry, pp. 597–632. North-Holland, Amsterdam (2000)
60. Schleimer, S.: Sphere recognition lies in NP. In: Low-Dimensional and Symplectic Topology (Athens

2009). Proc. Sympos. Pure Math., vol. 82, pp. 183–213. American Mathematical Society, Providence
(2011)

61. Schütz, D.: A fast algorithm for calculating S-invariants. Glasg. Math. J. 63(2), 378–399 (2021)
62. Schütz, D.: Knotjob (2022, blue version). https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.

html
63. Segerman, H.: Connectivity of triangulations without degree one edges under 2-3 and 3-2 moves. Proc.

Am. Math. Soc. 145(12), 5391–5404 (2017)
64. Simon, J.K.: Energy functions for polygonal knots. J. Knot Theory Ramif. 3(3), 299–320 (1994)
65. Sundberg, C., Thistlethwaite, M.: The rate of growth of the number of prime alternating links and

tangles. Pac. J. Math. 182(2), 329–358 (1998)
66. Szabó, Z.: Knot Floer homology calculator (2022). https://web.math.princeton.edu/~szabo/HFKcalc.

html
67. Tillmann, S.: Normal surfaces in topologically finite 3-manifolds. Enseign. Math. 54(3–4), 329–380

(2008)
68. Weber, C., Seifert, H.: Die beiden Dodekaederräume. Math. Z. 37(1), 237–253 (1933)
69. Weeks, J.R.: Convex hulls and isometries of cusped hyperbolic 3-manifolds. Topol. Appl. 52(2), 127–

149 (1993)
70. Weeks, J.R.: Source code file close_cusps.c for SnapPea, v. 2.5 (circa 1995). https://github.com/

3-manifolds/SnapPy/blob/master/kernel/kernel_code/
71. Weeks, J.: Computation of hyperbolic structures in knot theory. In: Handbook of Knot Theory, pp.

461–480. Elsevier, Amsterdam (2005)
72. Zentner, R.: Integer homology 3-spheres admit irreducible representations in SL(2,C). Duke Math. J.

167(9), 1643–1712 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html
https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html
https://web.math.princeton.edu/~szabo/HFKcalc.html
https://web.math.princeton.edu/~szabo/HFKcalc.html
https://github.com/3-manifolds/SnapPy/blob/master/kernel/kernel_code/
https://github.com/3-manifolds/SnapPy/blob/master/kernel/kernel_code/

	Computing a Link Diagram From Its Exterior
	Abstract
	1 Introduction
	1.1 Prior Work
	1.2 Outline of the Algorithm

	2 Background
	2.1 Triangulations
	2.2 Triangulations with PL Curves
	2.3 Dehn Filling
	2.4 Pachner Moves

	3 Building the Initial Triangulation
	4 Finding Certificates
	4.1 Basic Triangulation Simplification

	5 Modifying Triangulations with Arcs
	5.1 Pachner Moves with Arcs
	5.2 Weak Barycentric Arcs
	5.3 Putting the Problem into mathbbR3
	5.4 Transferring the Arcs
	5.5 Simplifying Arcs
	5.6 Putting the Pieces Together
	5.7 Computational Geometry Issues

	6 Factoring the 2-to-0 Move
	6.1 Dealing with Twisted Beaks Using Special Spines

	7 Building the Initial Diagram
	8 Simplifying Link Diagrams
	9 A Lower Bound on Computational Complexity
	10 Implementation and Initial Experiments
	11 Applications
	11.1 Congruence Links
	11.2 Dehn Surgery Descriptions
	11.3 Knots with the Same 0-Surgery

	12 Conclusion and Open Questions
	Supplementary Information
	Acknowledgements
	References

